

Long-term Cost Optimization of a Low-carbon Hydrogen Network for Industrial Decarbonization

Negar Namazifard ^{a, b, c} Nienke Dhondt ^d Greet Van Eetvelde ^d Pieter Vingerhoets ^{b, c} Erik Delarue ^{a, c}

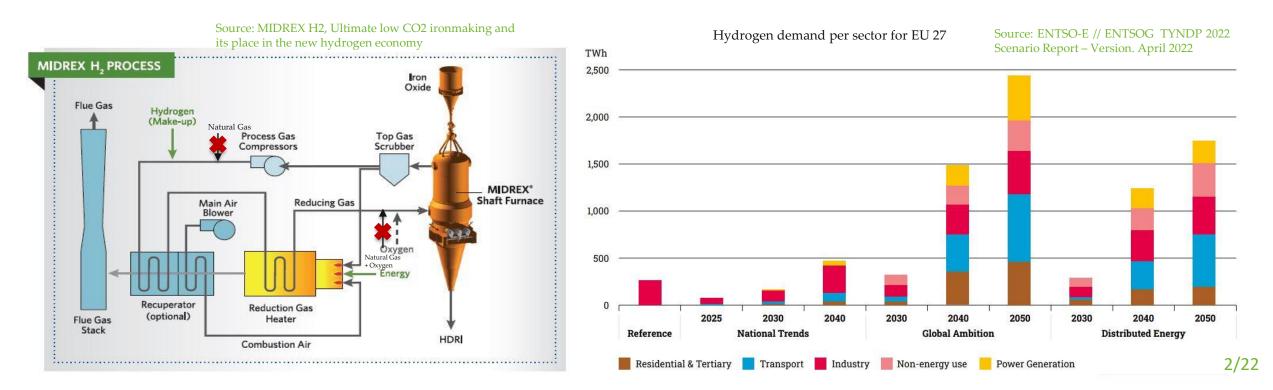
a. KU Leuven, b. VITO, c. EnergyVille, d. EELab, Ghent University

YEEES 31: Vienna 11-05-2023

► Introduction

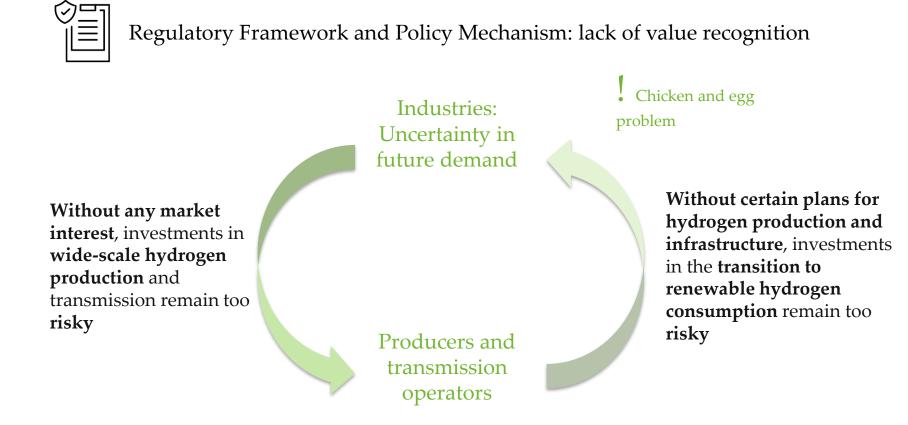
- Research Gap and Objectives
 Methodology
- Case Study
- **Results**
- Conclusion

10


Introduction

Role of hydrogen in transition pathways

□ Electrification → the most efficient way : residential, commercial, transport, and some industries


□ Mixed decarbonization routes for a full cross-sector green transition → clean molecules

- Industry: Fossil fuel-based feedstocks in the hard-to-abate industries
- Transport: long-distance transport routes (heavy-duty trucks, shipping, aviation)
- **Power sector:** long-term/short flexibility in the power system with a high share of renewables

Introduction

Uncertainty in the future hydrogen market

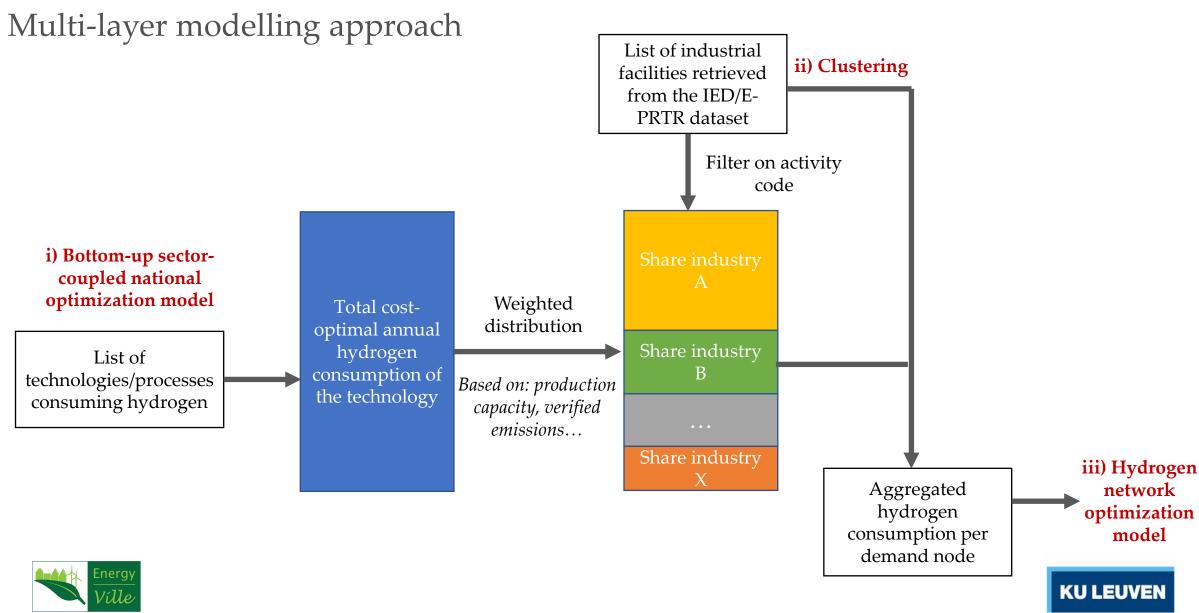
Detailed national scenario analyses on the future hydrogen supply chain from the required production and transport capacities to the final demand estimations

Research Gap and Objectives

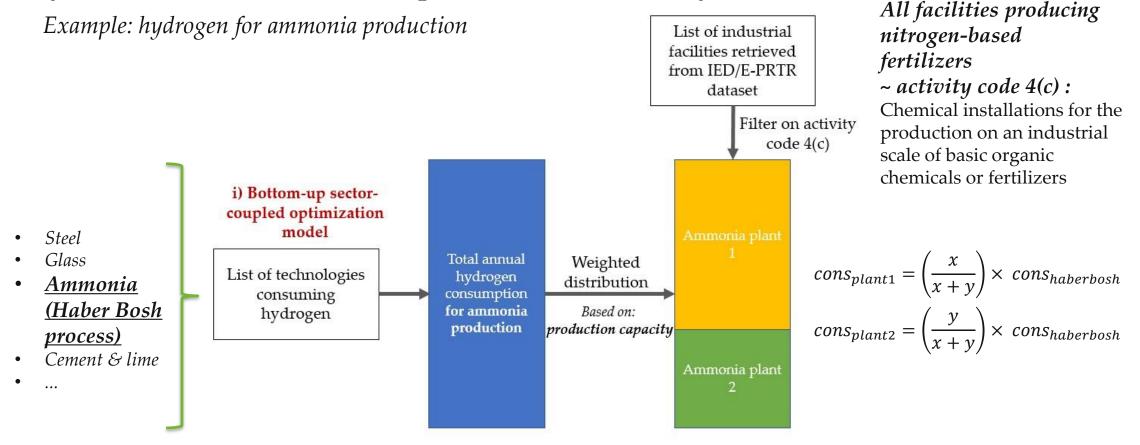
Research gaps:

□ Most of the studies → the role of hydrogen in the energy sector (transport, heat, electricity)

- □ Rare attempts at **industrial decarbonization** following a detailed high **spatial resolution network optimization** model
- Different supply scenarios for the production and imports of low-carbon hydrogen (derivatives) are still missing


Objective:

Developing a multi-layer modeling methodology for:


- i. Future hydrogen demand estimation of industrial facilities
- ii. Geospatial analysis for grouping industries in different demand nodes
- iii. Cost-optimal sizing of the required future hydrogen network following the national gas TSOs' topology

Layer 1: demand estimation per industrial facility

Ammonia plant 1 – x kton/y Ammonia plant 2 – y kton/y

Layer 2: clustering algorithm

List of facilities with details on annual hydrogen consumption, based on production capacity

How to group these facilities into larger demand zones for the hydrogen grid?

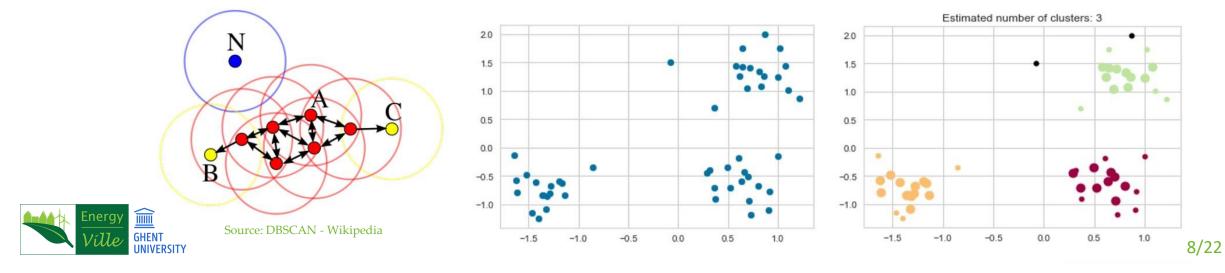
Solution

<u>D</u>ensity <u>B</u>ased <u>S</u>patial <u>C</u>lustering of <u>A</u>pplications with <u>N</u>oise

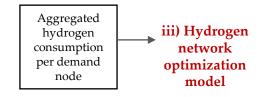
- ✓ Identify areas of high density
- ✓ Distinguish clustered from noise points
- ✓ 2 degrees of freedom, epsilon (an upper limit to the distance between two neighboring nodes), and #nodes (min number of nodes)

- List of demand clusters
- Center of the cluster used as a grid node

List of industrial


facilities retrieved from

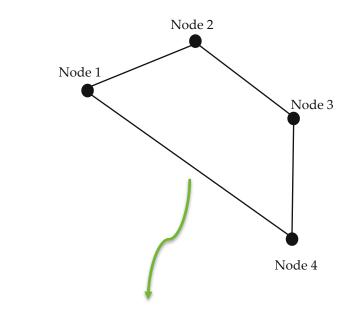
the IED/E-PRTR dataset ii) Clustering


Aggregated

hydrogen consumption per demand node

• Total hydrogen consumption per cluster instead of per facility

Layer 3: hydrogen network optimization model



Different low-carbon/green hydrogen production scenarios

Blue hydrogen scenario II. Offshore scenario II. Decentral inland scenario Ι. Node 2 Node 1 Sea Land H2: Submarine H2 C Hydrogen [[4]]⊢ H2 pipes H2 Offshore \mathbb{L} ᄃᅀᄀᅝ Wind 百 Turbines hydrogen Offshore SMR+CCS Inland Ŕ network Electrolyzer hydrogen Node n Platforms network H2 Possibility of **importing** NH3 hydrogen derivatives in ~~~~ all the scenarios from 虹 overseas and reconverting Inland Storage and Import via to pure gaseous hydrogen hydrogen regasification shipping Energy network **KU LEUVEN** 'ílle 9/22

Layer 3: hydrogen network optimization model

- > High spatial resolution following a nodal approach
- Demand nodes \rightarrow resulted from the clustering algorithm
- Supply nodes \rightarrow depending on the given scenarios
 - Offshore zones
 - Coastal regions: interconnector between offshore zones and inland zones
 - Terminals: import zones for hydrogen derivatives
 - Interconnection with neighboring regions/countries
 - Industrial zones with steam methane reforming capacities
- High temporal hourly resolution
- Multi-year investment periods

A connection among each pair of regions can be chosen and installed from the given candidate pipe (for e.g., DN500, DN900, DN1200):

CP1: C_1 GW capacity CP2: C_2 GW capacity ... CP3: C_n GW capacity

A binary variable is defined for each candidate pipe

KU LEUVEN

10/22

Layer 3: hydrogen network optimization model

What do we minimize/maximize in this model?

Objective function:

$$Cost^{tot} = Cost^{prod} + Cost^{imp} + Cost^{trans}$$

- Production cost components depend on the scenario
- $Cost^{prod} = \sum_{y \in Y} \left((1 + D_y)^{-y} \cdot \sum_{s \in S} C_{s,y} \cdot cap_{s,y}^{new} + F_{s,y} \cdot cap_{s,y}^{tot} + \sum_{t \in T} \sum_{e \in E} P_{gas,t,y}^{da} \cdot cons_{s,t,y}^{gas} \right)$ Blue hydrogen scenario 1. CAPEX and OPEX SMR+CCS Variable cost for gas consumption $Cost^{prod} = \sum_{y \in Y} \left((1 + D_y)^{-y} \cdot \left(C_{w,y} \cdot cap_{w,y}^{new} + F_{w,y} \cdot cap_{w,y}^{tot} + C_{ofe,y} \cdot cap_{ofe,y}^{new} + F_{ofe,y} \cdot cap_{ofe,y}^{tot} + V_{ofe,y} \cdot p_{ofe}^{H2} \right) \right)$ Offshore scenario II. Costs of offshore wind turbine Costs of offshore Electrolyzer $Cost^{prod} = \sum_{y \in Y} \left((1 + D_y)^{-y} \underbrace{\sum_{e \in IE} C_{ie,y} \cdot cap_{ie,y}^{new} + F_{ie,y} \cdot cap_{ie,y}^{tot}}_{\gamma} + \underbrace{\sum_{t \in T} \sum_{e \in IE} P_{elec,t,y}^{da} \cdot cons_{ie,t,y}^{elec}}_{\gamma} \right)$ Decentral inland scenario III. Variable cost of electricity purchase in the CAPEX and OPEX of inland Electrolyzer day-ahead electricity mar^{1-ot} **KU LEUVEN**

Layer 3: hydrogen network optimization model

What do we minimize/maximize in this model?

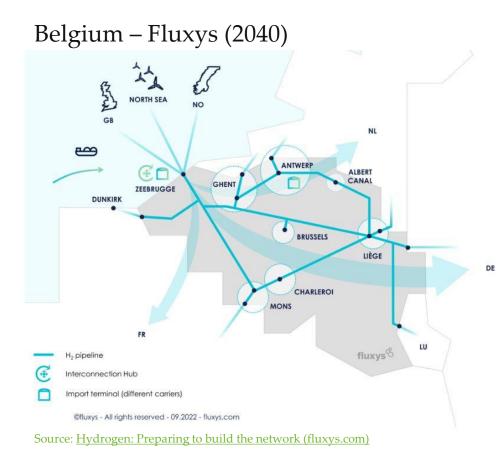
Objective function:

$$Cost^{tot} = Cost^{prod} + Cost^{imp} + Cost^{trans}$$

$$Cost^{imp} = \sum_{y \in Y} \left(\left(1 + D_y \right)^{-y} \cdot \sum_{y \in Y} \left(\sum_{n \in N^{imp}} \left(\sum_{t \in T} \left(p_{a,t,y}^{imp} \cdot imp_{t,y}^a \right) + C_{conv,y} \cdot cap_{conv,y}^{new} + F_{conv,y} \cdot cap_{conv,y}^{tot} \right) \right) \right)$$

$$Import price \qquad CAPEX and OPEX ammonia tank and regasification$$

$$Cost^{trans} = \sum_{y \in Y} \left(\left(1 + D_{y}\right)^{-y} \cdot \sum_{(n,,\hat{n}) \in P} \sum_{cp \in CP} \left(\left(C_{cp,y} + C_{cp,y}^{comp}\right) \cdot z_{n,\hat{n},cp,y} \cdot L_{n,\hat{n}} + \left(F_{cp,y} + F_{cp,y}^{comp}\right) \cdot \sum_{y_{k} = y_{0}}^{y} z_{n,\hat{n},cp,y_{k}} \cdot L_{n,\hat{n}} \right) \right)$$


$$CAPEX \text{ pipelines and compressor stations} OPEX \text{ pipelines and compressor stations (including the electricity price)}}$$

Compressor investment and operational cost are calculated based on the required compression capacity per km of the hydrogen pipeline

Case Study Fluxys roadmap

A hydrogen infrastructure proposal by the gas TSO based on the **identification of potential industrial demand and supply clusters and their market interest**

No analysis and quantitative information on:

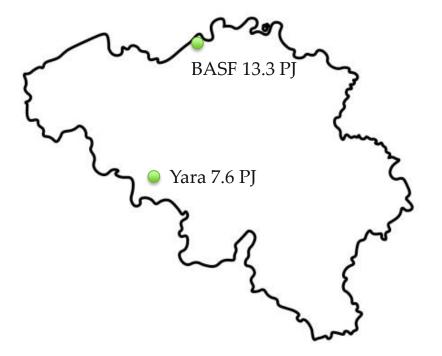
- Required hydrogen volumes per each cluster
- Required **pipeline capacities** among each pair of industrial zone considering **different supply scenarios**

Input to our model: boundary condition in terms of **potential connections** among regions within Belgium

✗ The interconnection and potential trade with neighboring countries

Case Study

Demand estimation: TIMES – BE model

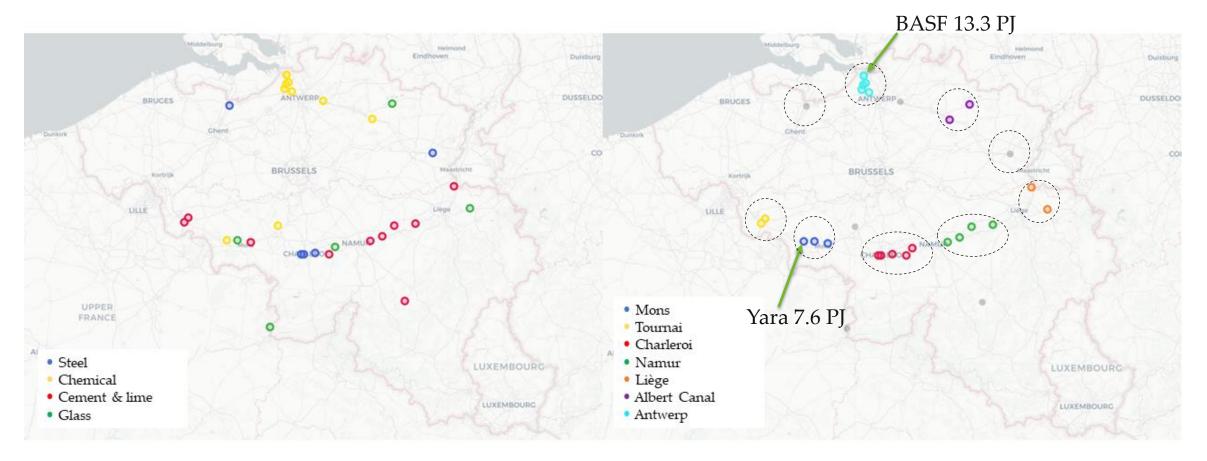

Example: hydrogen for ammonia production

2 ammonia production plants in Belgium (~ E-PRTR database):

- Yara Tertre, 400 kton/year (36%)
- BASF Antwerp, 700 kton/year (64%)

Total annual hydrogen consumption from TIMES BE model for ammonia production (Haber boch process): 20.9 PJ

- Yara Tertre, 7.6 PJ (36%)
- BASF Antwerp, 13.3 PJ (64%)



Case Study

Clustering application (Demand nodes)

All industrial activities are assumed to stay in Belgium

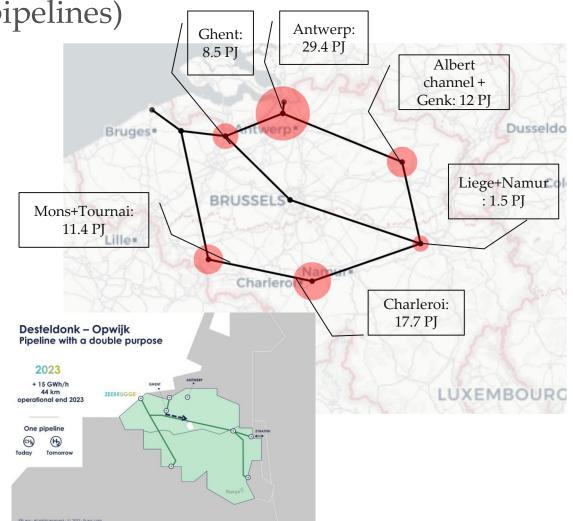
Ghent: ArcelorMittal Genk: Aperam Stainless Belgium

Case Study

Network optimization (Supply nodes and pipelines)

Blue hydrogen → Antwerp and Ghent (existing SMR capacities

Offshore → Princess Elisabeth Zone connected to Zeebrugge (45 km)


Decentral inland \rightarrow electrolysis capacities are located in demand clusters themselves

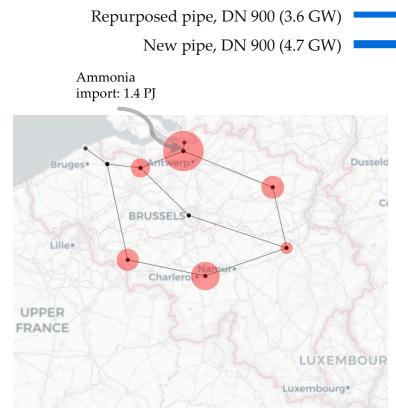
X Belgium as a transit country to Germany

Assumptions: Most of the pipes \rightarrow newly installed

Candidate pipes and compressors	Construction	CAPEX (M€/km)	OPEX (% CAPEX)
Pipe DN500	New	2.5	0.9
	Repurposed	0.25	0.9
Pipe DN900	New	2.75	0.9
	Repurposed	0.5	0.9
Compressor DN500	New	0.09	1.7
	Repurposed	0.09	1.7
C DNI000	New	0.32	1.7
Compressor DN900	Repurposed	0.14	1.7


Source: <u>Fluxys increases transmission capacity with the second</u> <u>Desteldonk-Opwijk pipeline and takes a first step in realizing hydrogen</u> <u>ambitions</u>


Results


Future hydrogen backbone in each scenario

Ammonia import limited to 50% of the demand

I. Blue hydrogen scenario

II. Decentral inland scenario

Energy Ville Total electricity in decentral scenario consumption: 30.6 TWh Total renewable electricity produced in 2021: 25 TWh

Results

The total cost of hydrogen production and transport in each scenario (considering costs for the whole model time horizon including the salvage values)

Offshore scenario:1) network-intensive scenario2) Import-intensive scenario (green block is mostly due to regasification and storage)

Conclusions

- Regionalization methods → high spatial demand estimation (after a system-level net zero perspective) → hydrogen network analyses
- Belgian case: DBSCAN clustering algorithm verifies the gas TSO's proposal for industrial hydrogen demand clusters (identifying areas with a high density of facilities)
- Belgian case: the cost-optimal configuration of the future hydrogen network varies based on different supply scenarios
- Offshore scenario → the most network-inessive scenario and slightly higher (total production, import and transport cost)
- Belgian case: longer refurbished pipeline trajectories are more cost-optimal than shorter newly installed pipe segments (Ghent Liege vs Antwerp Albert Channel)
- Belgian case: no hydrogen network investments in the decentral scenario with very high additional electricity demand → can the future grid cope with this additional demand?

References

- 1. Elia_Roadmap-to-Net-Zero.
- 2. Implementing The REpower EU Action Plan.
- 3. Reuß, M.; Welder, L.; Thürauf, J.; Linßen, J.; Grube, T.; Schewe, L.; Schmidt, M.; Stolten, D.; Robinius, M. Modeling Hydrogen Networks for Future Energy Systems: A Comparison of Linear and Nonlinear Approaches. International Journal of Hydrogen Energy 2019, 44 (60), 32136–32150. <u>https://doi.org/10.1016/j.ijhydene.2019.10.080</u>.
- 4. Strachan, N.; Baltaozkan, N.; Joffe, D.; Mcgeevor, K.; Hughes, N. Soft-Linking Energy Systems and GIS Models to Investigate Spatial Hydrogen Infrastructure Development in a Low-Carbon UK Energy System. International Journal of Hydrogen Energy 2009, 34 (2), 642–657. <u>https://doi.org/10.1016/j.ijhydene.2008.10.083</u>.
- 5. Samsatli, S.; Staffell, I.; Samsatli, N. J. Optimal Design and Operation of Integrated Wind-Hydrogen-Electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain. *International Journal of Hydrogen Energy* **2016**, *41* (1), 447–475. <u>https://doi.org/10.1016/j.ijhydene.2015.10.032</u>.
- 6. Samsatli, S.; Samsatli, N. J. The Role of Renewable Hydrogen and Inter-Seasonal Storage in Decarbonising Heat Comprehensive Optimisation of Future Renewable Energy Value Chains. *Applied Energy* 2019, 233–234, 854–893. <u>https://doi.org/10.1016/j.apenergy.2018.09.159</u>.
- 7. Johnson, N.; Ogden, J. A Spatially-Explicit Optimization Model for Long-Term Hydrogen Pipeline Planning. International Journal of Hydrogen Energy **2012**, 37 (6), 5421–5433. https://doi.org/10.1016/j.ijhydene.2011.08.109.
- 8. Infrastructure Outlook 2050. Gasunie. https://www.gasunie.nl/en/expertise/energy-system/infrastructure-outlook-2050 (accessed 2023-04-17).
- 9. Koirala, B.; Hers, S.; Morales-España, G.; Özdemir, Ö.; Sijm, J.; Weeda, M. Integrated Electricity, Hydrogen and Methane System Modelling Framework: Application to the Dutch Infrastructure Outlook 2050. Applied Energy 2021, 289, 116713. https://doi.org/10.1016/j.apenergy.2021.116713.
- 10. PATHS2050 | Energy outlook. https://perspective2050.energyville.be/ (accessed 2023-01-10).
- 11. European-Hydrogen-Backbone-Report_April-2022.
- 12. EU Emissions Trading System (EU ETS). https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en (accessed 2023-04-22).
- 13. 2050 DESSTINEE. https://sites.google.com/site/2050desstinee/introduction (accessed 2023-04-11).
- 14. Industrial Emissions Directive. https://environment.ec.europa.eu/topics/industrial-emissions-and-accidents/industrial-emissions-directive_en (accessed 2023-04-22).

References

- 15. The European Pollutant Release and Transfer Register (E-PRTR). https://environment.ec.europa.eu/topics/industrial-emissions-and-accidents/european-pollutant-release-and-transfer-register-e-prtr_en (accessed 2023-04-22).
- 16. 2.3. Clustering. scikit-learn. https://scikit-learn/stable/modules/clustering.html (accessed 2023-04-22).
- 17. Mendez Alva, F.; De Boever, R.; Van Eetvelde, G. Hubs for Circularity: Geo-Based Industrial Clustering towards Urban Symbiosis in Europe. Sustainability 2021, 13 (24), 13906. https://doi.org/10.3390/su132413906.
- 18. Hydrogen: Preparing to build the network. https://www.fluxys.com/en/energy-transition/hydrogen-carbon-infrastructure/hydrogen_preparing-to-build-the-network (accessed 2023-04-11).
- 19. Hypatia: An Operation and Planning Energy System Modelling Framework hypatia 0.1 documentation. https://hypatia-py.readthedocs.io/en/latest/?badge=latest (accessed 2023-03-31).
- 20. Princess Elisabeth Island. https://www.elia.be/en/infrastructure-and-projects/infrastructure-projects/princess-elisabeth-island (accessed 2023-04-19).
- 21. Annex I Activity Codes. https://converters.eionet.europa.eu/xmlfile/EPRTR_AnnexlActivityCode_1.xml (accessed 2023-04-22).
- 22. Geopunt | Digitaal Vlaanderen. https://www.geopunt.be/ (accessed 2023-04-22).
- 23. Fluxys increases transmission capacity with second Desteldonk-Opwijk pipeline and takes a first step in realising hydrogen ambitions. https://www.fluxys.com/en/press-releases/fluxys-belgium/2022/221201_press_increased_capacity_desteldonk_opwijk (accessed 2023-04-23).
- 24. European-Hydrogen-Backbone_April-2021_V3.Pdf.
- 25. Hy3 Large-Scale Hydrogen Production from Offshore Wind to Decarbonise the Dutch and German Industry. 148.
- 26. The Future of Hydrogen Analysis. IEA. https://www.iea.org/reports/the-future-of-hydrogen (accessed 2023-04-21).
- 27. Waterstofimportcoalitie.Pdf. https://www.waterstofnet.eu/_asset/_public/H2Importcoalitie/Waterstofimportcoalitie.pdf (accessed 2023-04-21).
- 28. Electricity scenarios for Belgium towards 2050. issuu. https://issuu.com/eliagroup/docs/20171114_elia_4584_adequacyscenario/1 (accessed 2023-04-21).
- 29. Renewables.ninja. https://www.renewables.ninja/ (accessed 2023-04-21).

Thank you!

Contact: negar.namazifard@kuleuven.be

Back-Up Slides

Network Optimization Model

Input parameters and assumptions

Energy

Technology		tment 'GW)		O&M GWa)	08	able zM GWh)	Lifetiı	me (y)	effici	ersion ency 6)		ability or (%)
year	2025	2040	2025	2040	2025	2040	2025	2040	2025	2040	2025	2040
SMR + CCS	1613	1413	50	50	-	-	20	20	69	69	90	90
Ammonia reconv + storage	3150	3150	72.6	72.6	-	-	30	30	84	84	92	92
Offshore wind	1875	1625	72.5	57	-	-	30	30	-	-	Tim e serie s 1	Tim e serie s
Offshore electrolyzer + platform	870	670	32	23	0.002 2	0.002	20	20	69	72	96	96
Înland electrolyzer	653	463	9.8	6.7	-	-	20	20	69	72	96	96

- 1. The hourly time series for offshore wind → renewable ninja considering a hub height of 80 m
- 2. The variable cost of offshore electrolyzer \rightarrow water desalination process

TIMES – BE Processes

TIMES technology	Main activity	Main activity code
Steel - Hydrogen DRI source for H2 shaft	Metal ore (including sulphide ore) roasting or sintering installations	2(a)
Steel - Blast Furnace with Hydrogen injection	Installations for the production of pig iron or steel 2(b)	
Steel - Finishing Heat_Hydrogen (H2)	(primary or secondary melting) including continuous casting	
Ammonia - Haber Bosh Process (Refurbished)	Chemical installations for the production on an industrial	4(a)(i), 4(c)
Ammonia - Harber Bosh Process (BY)	scale of basic organic chemicals OR fertilizers	
Chemical: HVC - Methanol Syntesis (New)	NA	NA
ICH – Other Chemicals Boiler High Temperature Heat	NA	NA
Glass- Flat with hydrogen		3(e)
Glass- Hollow with hydrogen	Installations for the manufacture of glass, including glass fibre	
Glass- Fiber with hydrogen		
Cement - Process Heat Kiln H2 and plasma substitution (New)	Opencast mining and quarrying OR Installations for the	3(b), 3(c)(i), 3(c)(ii), 3(c)(iii)
Lime - Process Heat Kiln H2 and plasma substitution (New)	production of cement clinker and lime in rotary kilns or other furnaces	3(b), 3(c)(i), 3(c)(ii), 3(c)(iii)

P

E-PRTR Industrial Database

Industrial Companies	Main Activity Code	TRILATE Cluster
ARCELORMITTAL BELGIUM - GENT	2(a)	Gent
APERAM GENK	2(b)	Genk
APERAM STAINLESS BELGIUM SA	2(b)	Charleroi
INDUSTEEL	2(b)	Charleroi
THY MARCINELLE sa	2(b)	Charleroi
CARMEUSE sa - Carrière de Moha	3(b)	Namur
CARMEUSE sa - Carrière d'Aisemont	3(b)	Charleroi
CCB sa - Carrière de Gaurain-Ramecroix	3(b)	Tournai
HOLCIM Belgique sa - Usine d'OBOURG	3(c)(i)	Mons
CBR sa - Site d'Antoing	3(c)(i)	Tournai
CBR sa - Site de Lixhe	3(c)(i)	Liège
LHOIST INDUSTRIE sa - Site de On	3(c)(ii)	NA
CARRIERES ET FOURS A CHAUX DUMONT WAUTIER SA	3(c)(iii)	Namur
DOLOMIES DE MARCHE-LES-DAMES sa	3(c)(iii)	Namur
CARMEUSE sa - Site de Seilles	3(c)(iii)	Namur
3B-FIBREGLASS sprl	3(e)	Liège
AGC GLASS EUROPE VESTIGING MOL	3(e)	Albert Canal
AGC GLASS EUROPE - Site de Moustier (ex-GLAVERBEL sa)	3(e)	Charleroi
GERRESHEIMER MOMIGNIES sa	3(e)	NA
SAVERGLASS MD Verre	3(e)	Mons
YARA TERTRE sa-nv - CETPROBEL sa	4(c)	Mons
BASF ANTWERPEN	4(a)(i)	Antwerp